ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Jonathan K. Anderson, Samuel G. Durbin II, Dennis L. Sadowski, Minami Yoda, Said I. Abdel-Khalik, ARIES Team
Fusion Science and Technology | Volume 43 | Number 3 | May 2003 | Pages 401-407
Technical Paper | Chambers and Chamber Wall Protection Methods | doi.org/10.13182/FST03-A284
Articles are hosted by Taylor and Francis Online.
The fusion event in inertial fusion energy (IFE) reactors creates neutrons, photons, and charged particles that can damage the chamber first walls. The Prometheus design study used a high-speed thin film of molten lead injected tangential to the wall to protect the upper endcap of the reactor chamber from damaging X rays and target debris. To assure full chamber coverage, the film must remain attached. Film detachment under the influence of gravity is most likely to occur on the downward-facing surfaces over the upper endcap of the reactor chamber. Accurate numerical predictions of detachment length are effectively impossible in this turbulent flow because of difficulties in determining appropriate boundary conditions near the detachment point.As part of the ARIES-IFE study, experimental investigations of high-speed water films injected onto downward-facing planar surfaces at angles of inclination up to 45 deg below the horizontal were therefore performed. The initial growth and subsequent detachment of films with initial thickness up to 2 mm and injection speed up to 11 m/s were measured. To our knowledge, these experiments are the first to investigate the detachment of turbulent liquid films on downward-facing surfaces. The implications of these initial results on thin liquid protection and the "wet wall" concept are discussed.