ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
NRC nominee Nieh commits to independent safety mission
During a Senate Environment and Public Works Committee hearing today, Ho Nieh, President Donald Trump’s nominee to serve as a commissioner at the Nuclear Regulatory Commission, was urged to maintain the agency’s independence regardless of political pressure from the Trump administration.
Ana M. Schwendt, Arthur Nobile, Peter L. Gobby, Warren P. Steckle, Jr., Denis G. Colombant, John D. Sethian, Daniel Thomas Goodin, Gottfried Ernst Alfred Besenbruch
Fusion Science and Technology | Volume 43 | Number 2 | March 2003 | Pages 217-229
Technical Paper | doi.org/10.13182/FST03-A262
Articles are hosted by Taylor and Francis Online.
The tritium inventory of direct drive inertial fusion energy (IFE) target filling facilities is examined in the interest of minimizing the tritium inventory. A model is described that has been developed to evaluate the tritium inventory of the target filling process as a function of filling and layering parameters, as well as target design parameters. Previous studies by A. Nobile et al. showed that the temperature and the fill system void fraction have a significant effect on the tritium inventory. The current study uses the model to examine the effect of deuterium-tritium (DT) ice layering time and density of the CH foam in the target on the tritium inventory. The study shows that increasing the foam density and decreasing the DT ice layering time significantly reduce the tritium inventory. Fortunately, one-dimensional target design calculations indicate that the foam density in the direct drive target can be increased to ~200 mg/cm3 without significant degradation of the target yield. Having evaluated and minimized the theoretical tritium inventory, calculations were performed with more realistic batch filling scenarios. The inventories associated with "real" filling scenarios approach the theoretical minimum inventory as the number of batches is increased, resulting in tritium inventories that seem acceptable for future IFE target DT filling facilities.