ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Ana M. Schwendt, Arthur Nobile, Peter L. Gobby, Warren P. Steckle, Jr., Denis G. Colombant, John D. Sethian, Daniel Thomas Goodin, Gottfried Ernst Alfred Besenbruch
Fusion Science and Technology | Volume 43 | Number 2 | March 2003 | Pages 217-229
Technical Paper | doi.org/10.13182/FST03-A262
Articles are hosted by Taylor and Francis Online.
The tritium inventory of direct drive inertial fusion energy (IFE) target filling facilities is examined in the interest of minimizing the tritium inventory. A model is described that has been developed to evaluate the tritium inventory of the target filling process as a function of filling and layering parameters, as well as target design parameters. Previous studies by A. Nobile et al. showed that the temperature and the fill system void fraction have a significant effect on the tritium inventory. The current study uses the model to examine the effect of deuterium-tritium (DT) ice layering time and density of the CH foam in the target on the tritium inventory. The study shows that increasing the foam density and decreasing the DT ice layering time significantly reduce the tritium inventory. Fortunately, one-dimensional target design calculations indicate that the foam density in the direct drive target can be increased to ~200 mg/cm3 without significant degradation of the target yield. Having evaluated and minimized the theoretical tritium inventory, calculations were performed with more realistic batch filling scenarios. The inventories associated with "real" filling scenarios approach the theoretical minimum inventory as the number of batches is increased, resulting in tritium inventories that seem acceptable for future IFE target DT filling facilities.