ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Sergei Molokov, Claude B. Reed
Fusion Science and Technology | Volume 43 | Number 2 | March 2003 | Pages 200-216
Technical Paper | doi.org/10.13182/FST03-A261
Articles are hosted by Taylor and Francis Online.
Liquid metal flow in a straight duct in a fringing magnetic field is considered. The magnetic field is uniform with two different levels upstream and downstream. In the region of a nonuniform magnetic field, the gradient of the field is aligned with the duct axis. The flow is assumed to be inertialess. It is analyzed using an asymptotic flow model at high values of the Hartmann number, Ha. A corresponding study of the flow is used as a starting point by Hua and Walker. The analysis leads to two two-dimensional partial differential equations for the core pressure and the electric potential of the duct wall. These equations are solved numerically using central differences on a transformed grid. It has been confirmed that for the flow in insulating circular ducts, the three-dimensional effects are very significant. For high values of Ha, the three-dimensional pressure drop is equivalent to the extension of the length of the duct with fully developed flow by 10 to 150 diameters. A parametric study of the flow has been performed for different values of the Hartmann number, field gradient, and field levels upstream and downstream. A solution for the benchmark problem has been obtained for Ha = 258 000, which is relevant to inlet/outlet pipes for ARIES. Finally, the effect of the finite length of the magnet in magnetohydrodynamic experiments has been evaluated.