ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
W.J. McGann, G. Entine, R.F. Farrell, A. Clapp, M.R. Squillante
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 1041-1046
Measurement of Tritium | doi.org/10.13182/FST88-A25275
Articles are hosted by Taylor and Francis Online.
Low noise silicon avalanche photodiodes (APDs) with ultra thin surface dead layers have been developed for detecting tritium beta particles. Unlike the present windowless proportional counters and liquid scintillation techniques this alternative requires no liquid or flowing gases and has the reliability and compactness of solid-state detector technology. We have carried out detector research to study and optimize the physical and electrical properties of APDs for nuclear spectroscopy. A particular emphasis has been placed on reducing the noise and surface dead layer of large area avalanche photodiodes (1 cm diameter) in order to maximize the quantum efficiency for detecting low energy betas, as well as to investigate the effects of changing temperature, bias, and leakage current on avalanche gain, signal-to-noise and tritium detection quantum efficiency.