ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J. T. Gill, R. E. Ellefson, R. P. Paulick, C. M. Colvin, R. L. Yauger, E. E. Johns, R. L. Anderson, E. L. Lewis, P. H. Lamberger, R. E. Vallee
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 876-883
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25245
Articles are hosted by Taylor and Francis Online.
A recent tritium inventory imbalance at Mound required an investigation into its causes. Much tritium was found as HTO in unsuspected zeolite traps of a T-purification system. Isotopic exchange from ammonia was postulated as a mechanism for entry of T into the zeolitic water. Gases from a T-processing system which had experienced air in-leakage were shown, by trapping of condensibles, to contain substantial H-isotopic waters and ammonias. Further evidence for tritiated ammonia was inferred from changes in pressure and T purity in otherwise unperturbed tanks of N2 and (H/D/T)2. From two such tanks which held N2 and T2 at equilibrium, ammonia was trapped and decomposed; a preliminary equilibrium constant for N2 + 3T2 ⇔ 2NT3 was determined. Controlled experiments by laser Raman spectrometry are in progress to investigate N2/T2 equilibria and kinetics. Results for gas mixtures in the 60–130 kPa (500–1000 torr) range (per reactant) suggest that the forward rate and the equlibrium attained are α [T2]2 . G-values for NT3 production were ≈1–2 molecules atm-1 (T2) (100eV)-1. Self-decomposition of NT3 proceded in an exponential decay with a G = 15–30. A lower value was observed at pressures where β--absorption in the gas was poor.