ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. C. Souers, E. M. Fearon, E. R. Mapoles, J. D. Sater, G. W. Collins, J. R. Gaines, R. H. Sherman, J. R. Bartlit
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 855-863
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25242
Articles are hosted by Taylor and Francis Online.
The expected value of nuclear spin polarization to inertial confinement fusion is recapitulated. A comparison of brute force polarization versus dynamic nuclear polarization, as applied to solid deuterium-tritium, is given, and the need for a long triton polarization memory time (longitudinal nuclear relaxation time) is shown. The time constant for 25 mol%T2-50 DT-25 D2 (D-T) is a short 0.3 s at 5 K and waiting in the presence of tritium radioactivity lowers it to 0.1 s. Enriched 90 to 96% molecular DT has been synthesized and held 3 to 4 hours at 10 K, which lowers the overall J=1 T2 concentration to about 0.1%. The resulting memory time can be raised in this way to 0.7 to 0.8 s. These samples were then melted and nHp added, which increased the memory times to 6 to 8 s - an increase of twenty-fold over regular D-T at 5 to 6 K. The theory shows that the species shortening the triton memory time is the J=1 T2, which can be reduced in our samples only by radioactive self-catalysis. Cryogenic distillation is considered as a possible means of removing the J=1 T2 from molecular DT.