ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
P. C. Souers, E. M. Fearon, E. R. Mapoles, J. D. Sater, G. W. Collins, J. R. Gaines, R. H. Sherman, J. R. Bartlit
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 855-863
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25242
Articles are hosted by Taylor and Francis Online.
The expected value of nuclear spin polarization to inertial confinement fusion is recapitulated. A comparison of brute force polarization versus dynamic nuclear polarization, as applied to solid deuterium-tritium, is given, and the need for a long triton polarization memory time (longitudinal nuclear relaxation time) is shown. The time constant for 25 mol%T2-50 DT-25 D2 (D-T) is a short 0.3 s at 5 K and waiting in the presence of tritium radioactivity lowers it to 0.1 s. Enriched 90 to 96% molecular DT has been synthesized and held 3 to 4 hours at 10 K, which lowers the overall J=1 T2 concentration to about 0.1%. The resulting memory time can be raised in this way to 0.7 to 0.8 s. These samples were then melted and nHp added, which increased the memory times to 6 to 8 s - an increase of twenty-fold over regular D-T at 5 to 6 K. The theory shows that the species shortening the triton memory time is the J=1 T2, which can be reduced in our samples only by radioactive self-catalysis. Cryogenic distillation is considered as a possible means of removing the J=1 T2 from molecular DT.