ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
P. C. Souers, E. M. Fearon, R. K. Stump, R. T. Tsugawa
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 850-854
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25241
Articles are hosted by Taylor and Francis Online.
Collision-induced infrared spectroscopy may be used to measure the composition of a liquid or solid deuterium-tritium (D-T) mixture. For T2, DT and D2, respectively, we measure the areas under the absorption peaks in the regions 76.75 to 80.19, 85.29 to 88.74, and 92.79 to 96.23 THz (2560–2675, 2845–2960, and 3095–3210 cm−1). These areas are multiplied, respectively, by these isotopic sensitivities derived from quantum calculations: 1.000, 0.891, and 0.811. The resulting numbers are proportional to the molar composition. Nearly equimolar D-T samples show good agreement between mass and infrared spectroscopy. The large DT peak in enriched molecular DT overemphasizes D2 in the infrared analysis, but these results may be corrected with the room-temperature, mass-spectroscopic D-to-T ratio.