ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
CFS working with NVIDIA, Siemens on SPARC digital twin
Commonwealth Fusion Systems, a fusion firm headquartered in Devens, Mass., is collaborating with California-based computing infrastructure company NVIDIA and Germany-based technology conglomerate Siemens to develop a digital twin of its SPARC fusion machine. The cooperative work among the companies will focus on applying artificial intelligence and data- and project-management tools as the SPARC digital twin is developed.
P. C. Souers, E. M. Fearon, R. K. Stump, R. T. Tsugawa
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 850-854
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25241
Articles are hosted by Taylor and Francis Online.
Collision-induced infrared spectroscopy may be used to measure the composition of a liquid or solid deuterium-tritium (D-T) mixture. For T2, DT and D2, respectively, we measure the areas under the absorption peaks in the regions 76.75 to 80.19, 85.29 to 88.74, and 92.79 to 96.23 THz (2560–2675, 2845–2960, and 3095–3210 cm−1). These areas are multiplied, respectively, by these isotopic sensitivities derived from quantum calculations: 1.000, 0.891, and 0.811. The resulting numbers are proportional to the molar composition. Nearly equimolar D-T samples show good agreement between mass and infrared spectroscopy. The large DT peak in enriched molecular DT overemphasizes D2 in the infrared analysis, but these results may be corrected with the room-temperature, mass-spectroscopic D-to-T ratio.