ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Kan Ashida, Masao Matsuyama, Kuniaki Watanabe
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 735-740
Tritium Properties and Interactions with Material | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25222
Articles are hosted by Taylor and Francis Online.
Graphite is the primary candidate for the first wall of magnetically confined fusion devices. For this application, it is important to know the surface properties and trap/release behavior of hydrogen isotopes to understand fuel recycling/inventory in the graphite first wall. The surface analysis of as-received graphite revealed that the inherent hydrogen content is larger in isotropic compared to the anisotropic graphite. This is due to the presence of non-graphitized carbon atoms in the isotropic graphite which act as the trapping sites of hydrogen atoms. Ion bombardment causes the reduction of the crystallite size of graphite (damage modification), leading to amorphous-like structure. The thermal desorption spectra of hydrogen isotopes consisted of three desorption peaks for the modified graphite. The desorption mechanisms and parameters of three peaks are determined. These parameters were used to estimate the fuel inventory in the graphite.