ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
K.M. Kalyanam, S.K. Sood
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 524-528
Tritium Processing | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25186
Articles are hosted by Taylor and Francis Online.
A number of facilities have been either constructed or are operating to extract tritium from the heavy water moderator systems of nuclear reactors. However it is expected that most fusion reactor concepts would require the recovery of tritium from light water coolant or blanket systems. This paper highlights the significant differences between recovery of tritium from H2O and D2O in terms of feasibility, equipment size, process power requirements, tritium inventory etc. Process options are compared on an equal basis and quantitative differences for some typical fusion type of applications are highlighted. It is shown that distillation processes are especially more powerful for H/T systems than for D/T systems.