ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
James L. Anderson, John R. Bartlit
Fusion Science and Technology | Volume 14 | Number 2 | September 1988 | Pages 407-411
National Fusion Tritium Program | Proceedings of the Third Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Toronto, Ontario, Canada, May 1-6, 1988) | doi.org/10.13182/FST88-A25166
Articles are hosted by Taylor and Francis Online.
The fusion technology development program for tritium in the U.S. is centered around the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. Objectives of this project are to develop and demonstrate the fuel cycle for processing the reactor exhaust gas (unburned deuterium and tritium plus impurities), and the necessary personnel and environmental protection systems for the next generation of fusion devices. The TSTA is a full-scale system for a machine the size of the International Tokamak Reactor (INTOR) or the International Thermonuclear Experimental Reactor (ITER). That is, TSTA has the capacity to process tritium in a closed loop mode at the rate of 1 kg per day, requiring a tritium inventory of about 100 g. The TSTA program also interacts with all other tritium-related fusion technology programs in the U.S. and all major programs abroad. This report is a summary of the results and interactions of the TSTA program since a previous summary was published1 and an overview of related tritium programs.