ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
CFS working with NVIDIA, Siemens on SPARC digital twin
Commonwealth Fusion Systems, a fusion firm headquartered in Devens, Mass., is collaborating with California-based computing infrastructure company NVIDIA and Germany-based technology conglomerate Siemens to develop a digital twin of its SPARC fusion machine. The cooperative work among the companies will focus on applying artificial intelligence and data- and project-management tools as the SPARC digital twin is developed.
Kurt Borrass, William R. Spears
Fusion Science and Technology | Volume 14 | Number 1 | July 1988 | Pages 228-245
Technical Paper | Net Overview | doi.org/10.13182/FST88-A25161
Articles are hosted by Taylor and Francis Online.
Scoping studies for the Next European Torus (NET) using the SUPERCOIL system code are described. Capital-cost-optimized devices satisfying constraints imposed on stresses/strains, fields, access, etc., are compared. The main objective is to determine the impact of design characteristics, performance objectives, and underlying plasma physics assumptions on the parameters and cost of NET. The background against which the main parameters of NET have been chosen is developed and illustrated by the NET study points used during the conceptual design phase. Supporting studies extrapolating NET design and physics assumptions to DEMO and power reactors are performed to allow the reactor relevance of the physics performance and testing program of NET to be justified.