ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Donald J. Dudziak, William W. Saylor, William B. Herrmannsfeldt
Fusion Science and Technology | Volume 13 | Number 2 | February 1988 | Pages 207-216
Overview | Heavy-Ion Fusion | doi.org/10.13182/FST88-A25102
Articles are hosted by Taylor and Francis Online.
A multi-institutional study was conducted to evaluate the potential of heavy-ion induction Linacs as inertial confinement fusion (ICF) drivers. This Heavy-Ion Fusion Systems Assessment (HIFSA) study was a U.S. effort to evaluate a wide range of possible system configurations for electric power plants driven by induction Linacs, as opposed to the radio-frequency accelerators used in previous heavy-ion fusion (HIF) power plant conceptual designs. In contrast to these earlier studies, the HIFSA project specifically avoided concentrating on a point design. Rather, cost/performance models of the major systems in an HIF power plant were devised by the institutions with expertise in the applicable technologies (e.g., Lawrence Berkeley Laboratory for induction accelerators and beam transport/focus; McDonnell Douglas Astronautics Company for cost scaling and systems modeling/integration). (Detailed descriptions of these systems and associated integration/trade-off studies appear in other papers in this special issue.) Some of the key results of the HIFSA study are summarized and their significance assessed. The cardinal conclusions of the study are twofold: (a) Conceptual HIF power plants have estimated cost-of-electricity (COE) values that, at 1 GW(electric), are roughly comparable to those from other ICF and magnetic fusion system studies; and (b) HIF technology is robust in that there exists a large parameter space region in which the COE is close to the minimum; i.e., the minima in COE are broad.