ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Stefan Taczanowski
Fusion Science and Technology | Volume 13 | Number 1 | January 1988 | Pages 125-130
Technical Paper | Blanket Engineering | doi.org/10.13182/FST88-A25089
Articles are hosted by Taylor and Francis Online.
The resonance self-shielding effects in heterogeneous fissile breeding systems have been investigated. In media having peaked resonance cross sections, the influence of heterogeneities is manifested in the energy and space neutron flux depressions. The outcomes of numerical calculations performed for various pellet sizes and fissile material concentrations are shown in the form of “het-to-hom” ratios of the results obtained by considering normalized heterogeneities in relation to those accounting for self-shielding in respective, computationally homogenized mixtures. The observed reduction in fissile breeding and the increase in tritium breeding, 233U fissions, and parasitic absorptions are of the order of several tens of percent, depending on the fertile content. It is emphasized that neglecting heterogeneities leads to serious errors and nonoptimum designs, thus proving to be inadmissible in neutronic calculations for emerging nuclear energy systems.