ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
J. D. Galambos, D. T. Blackfield, Y-K. Martin Peng, R. Lowell Reid, Dennis J. Strickler, E. C. Selcow
Fusion Science and Technology | Volume 13 | Number 1 | January 1988 | Pages 93-114
Technical Paper | Fusion Reactor | doi.org/10.13182/FST88-A25087
Articles are hosted by Taylor and Francis Online.
The new Tokamak Systems Code, used to investigate compact ignition tokamaks (CITs), can simultaneously vary many parameters, satisfy many constraints, and minimize or maximize a figure of merit. It is useful in comparing different CIT design configurations over wide regions of parameter space and in determining a desired design point for more detailed physics and engineering analysis, as well as for performing sensitivity studies for physics or engineering issues. Operational windows in major radius (R) and toroidal field (B) space for fixed ignition margin are calculated for the Ignifed and Inconel candidate CITs. The minimum R bounds are predominantly physics limited, and the maximum R portions of the windows are engineering limited. For a modified Kaye-Goldston plasma energy confinement scaling, the minimum size is 1.15 m for the Ignifed device and 1.25 m for the Inconel device. With the Ignition Technical Oversight Committee physics guidance of B2a/q* and Ip > 10 MA, the Ignifed and baseline Inconel devices have minimum sizes of 1.2 and 1.25 m and toroidal fields of 11 and 10.4 T, respectively. Sensitivity studies show Ignifed to be more sensitive to coil temperature changes than the Inconel device, whereas the Inconel device is more sensitive to stress perturbations.