ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Sümer Şahin, Mohammad Al-Eshaikh
Fusion Science and Technology | Volume 12 | Number 3 | November 1987 | Pages 395-408
Technical Paper | Blanket Engineering | doi.org/10.13182/FST87-A25071
Articles are hosted by Taylor and Francis Online.
In a source-driven fissionable blanket, a flat fission power density (FPD) is achieved by using a mixed fuel (ThO2 and natural UO2) with the thorium/uranium ratio changing from front to back in the ten fuel rows along the radial direction. A straightforward graphic method is used. The temporal behavior of the FPD has been observed for an operation period of 6 months and for a plant load factor of 75% by applying a fusion driver neutron flux of 1014 14-MeV neutrons/(cm2·s) at the first wall, corresponding to ∼2.25 MW/m2. To keep the power density flat, it is necessary to replace the fuel in rows 1, 2, and 3, close to the first wall. The time intervals for this operation increase, counting from initial start-up, typically, 2 months, 6 months, etc. One result of this study is that plutonium produced in such a hybrid blanket contains very low amounts of even isotopic components even over very long operation times of ∼3 yr. Hence, if fusion reactors are introduced into the energy market, special regulations are needed for international safeguarding.