ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Sümer Şahin, Mohammad Al-Eshaikh
Fusion Science and Technology | Volume 12 | Number 3 | November 1987 | Pages 395-408
Technical Paper | Blanket Engineering | doi.org/10.13182/FST87-A25071
Articles are hosted by Taylor and Francis Online.
In a source-driven fissionable blanket, a flat fission power density (FPD) is achieved by using a mixed fuel (ThO2 and natural UO2) with the thorium/uranium ratio changing from front to back in the ten fuel rows along the radial direction. A straightforward graphic method is used. The temporal behavior of the FPD has been observed for an operation period of 6 months and for a plant load factor of 75% by applying a fusion driver neutron flux of 1014 14-MeV neutrons/(cm2·s) at the first wall, corresponding to ∼2.25 MW/m2. To keep the power density flat, it is necessary to replace the fuel in rows 1, 2, and 3, close to the first wall. The time intervals for this operation increase, counting from initial start-up, typically, 2 months, 6 months, etc. One result of this study is that plutonium produced in such a hybrid blanket contains very low amounts of even isotopic components even over very long operation times of ∼3 yr. Hence, if fusion reactors are introduced into the energy market, special regulations are needed for international safeguarding.