ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
H. W. Kugel, R. Budny, R. Fonck, R. Goldston, B. Grek, R. Kaita, S. Kaye, R. J. Knize, D. Manos, R. McCann, D. McCune, K. McGuire, D. K. Owens, D. Post, G. Schmidt, M. Ulrickson
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 145-152
Technical Paper | Divertor System | doi.org/10.13182/FST87-A25058
Articles are hosted by Taylor and Francis Online.
Power transport to the Poloidal Divert or Experiment graphite scoop limiter was measured during both ohmic- and neutral-beam-heated discharges by observing its front face temperatures using an infrared camera. Measurements were made as a function of plasma density, current, position, fueling mode, and heating power for both co- and counter-neutral beam injection. The measured thermal load on the scoop limiter was 25 to 50% of the total plasma heating power. The measured peak front face midplane temperature was 1500°C, corresponding to a peak surface power density of 3 kW/cm2. This power density implies an effective parallel power flow of 54 kW/cm2 in agreement with the radial power distribution extrapolated from television Thomson scattering and calorimetry measurements. Symmetric and asymmetric thermal loads were observed. The asymmetric heat loads were predominantly skewed toward the respective ion drift directions for both co- and counterinjected beams. The results of transport calculations are consistent with the direction and magnitude of the observed asymmetries.