ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
H. W. Kugel, R. Budny, R. Fonck, R. Goldston, B. Grek, R. Kaita, S. Kaye, R. J. Knize, D. Manos, R. McCann, D. McCune, K. McGuire, D. K. Owens, D. Post, G. Schmidt, M. Ulrickson
Fusion Science and Technology | Volume 12 | Number 1 | July 1987 | Pages 145-152
Technical Paper | Divertor System | doi.org/10.13182/FST87-A25058
Articles are hosted by Taylor and Francis Online.
Power transport to the Poloidal Divert or Experiment graphite scoop limiter was measured during both ohmic- and neutral-beam-heated discharges by observing its front face temperatures using an infrared camera. Measurements were made as a function of plasma density, current, position, fueling mode, and heating power for both co- and counter-neutral beam injection. The measured thermal load on the scoop limiter was 25 to 50% of the total plasma heating power. The measured peak front face midplane temperature was 1500°C, corresponding to a peak surface power density of 3 kW/cm2. This power density implies an effective parallel power flow of 54 kW/cm2 in agreement with the radial power distribution extrapolated from television Thomson scattering and calorimetry measurements. Symmetric and asymmetric thermal loads were observed. The asymmetric heat loads were predominantly skewed toward the respective ion drift directions for both co- and counterinjected beams. The results of transport calculations are consistent with the direction and magnitude of the observed asymmetries.