ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Stephen J. Czuchlewski, David E. Hanson, Burton J. Krohn, Alvin R. Larson, Edward T. Salesky
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 560-575
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25036
Articles are hosted by Taylor and Francis Online.
The optimization of a 10-kJ large aperture (1- × 1-m) electron-beam-pumped KrF laser is investigated theoretically. Model calculations in zero and one dimension have been performed over extensive ranges in a few parameters for optimization of output fluence. A practical procedure for one-dimensional modeling is given, and significant differences between calculations performed in zero and one dimension are discussed. Predictions are compared to preliminary experimental results. The model is then applied to a regime of much higher electron energy deposition and total gas pressure. Some aspects of the operation of such a laser are discussed.