ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
Akira Endoh, Masayoshi Watanabe, Shuntaro Watanabe
Fusion Science and Technology | Volume 11 | Number 3 | May 1987 | Pages 492-496
Technical Paper | KrF Laser | doi.org/10.13182/FST87-A25031
Articles are hosted by Taylor and Francis Online.
Two modules of a low impedance electron-beam (e-beam) machine were developed to pump a 200-J, 70-ns KrF laser from both sides. The laser was designed as the power amplifier of a picosecond, terawatt excimer laser system, which will be applied to a basic physical research on extreme ultraviolet lasers. Each driving circuit of the e-beam diode was a 2.8.-Ω double parallel plate Blumlein with a 500-kV rail gap as the main switch. The energy deposited in the 42-ℓ laser gain region was measured by several diagnostics to determine the energy transfer efficiency and the spatial uniformity of energy deposition with the guide magnetic field of 1 kG. The triggered operation of 500-kV rail gaps, which is essential for amplifier system synchronization, was realized by the ultraviolet laser irradiation along the rail-gap axis with reduced switching time and jitter of 20 and 1.9 ns, respectively.