ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Michael Tendler, Daniel Heifetz
Fusion Science and Technology | Volume 11 | Number 2 | March 1987 | Pages 289-310
Overview | doi.org/10.13182/FST87-A25010
Articles are hosted by Taylor and Francis Online.
The theory of neutral particle kinetics treats the transport of mass, momentum, and energy in a plasma due to neutral particles that themselves are unaffected by magnetic fields. This transport affects the global power and particle balances infusion devices, as well as profile control and plasma confinement quality, particle and energy fluxes onto device components, performance of pumping systems, and the design of diagnostics and the interpretation of their measurements. The development of analytic, numerical, and Monte Carlo methods of solving the time-independent Boltzmann equation describing neutral kinetics is reviewed. These models for neutral particle behavior typically use adaptations of techniques developed originally for computing neutron transport, due to the analogy between the two phenomena, where charge-exchange (CX) corresponds to scattering and ionization to absorption. There are, however, some important qualitative differences between the two fields. Progress in the simulation of neutral kinetics depends on developing multidimensional analytic methods and obtaining experimental data for the physical processes of wall reflection, the neutral/plasma interaction, and for processes in fusion devices that are directly related to neutral transport, such as Hα emission rates, plenum pressures, and CX emission spectra.