ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Bahrain signs a nuclear collaboration MOU with the U.S.
Less than a week after news broke of the U.S. entering into civil nuclear talks with Malaysia, the U.S. State Department announced that Secretary of State Marco Rubio and Bahrain’s Minister of Foreign Affairs Abdullatif bin Rashid Al Zayani have also signed a memorandum of understanding concerning civil nuclear cooperation.
Glen R. Edwards, Kent A. Jones, Steven F. Halvorson
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 243-252
Technical Paper | Blanket Engineering | doi.org/10.13182/FST86-A24976
Articles are hosted by Taylor and Francis Online.
Recent inertial confinement fusion reactor designs utilize liquid 17Li-83Pb blankets to absorb the neutron and thermal fluxes. One of the crucial concerns of these designs is the compatibility of structural alloys with this lithium-lead alloy, especially because of this liquid's possible propensity for embrittling materials. Current candidate pressure vessel steels for liquid lithium or lithium-lead containment are the Cr-Mo steels such as HT-9 (12 Cr-1 Mo), 2.25 Cr-1 Mo, and niobium-stabilized 2.25 Cr-1 Mo. This investigation was therefore aimed at characterizing the lithium-lead embrittlement susceptibility of the weldments of these steels subjected to a 17Li-83Pb liquid. Results of these embrittlement studies have shown that as-welded heat-affected zones of low phosphorus and sulfur 2.25 Cr-1 Mo, niobium-stabilized 2.25 Cr-1 Mo, and HT-9 steels all exhibit liquid-metal-induced embrittlement susceptibility when subjected to a 17Li-83Pb liquid. The embrittlement, however, was found to be very dependent on post-weld heat treatment. Normally extensive post-weld heat treatments greatly ameliorate the 17Li-83Pb embrittlement, rendering these steels acceptable for 17Li-83Pb containment.