ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Wayne A. Houlberg, James T. Lacatski, Nermin A. Uckan
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 227-235
Technical Paper | Fusion Reactor | doi.org/10.13182/FST86-A24974
Articles are hosted by Taylor and Francis Online.
Confinement and engineering issues of a small (average minor radius ā ≃ 1 m) moderate-aspect-ratio torsatron reactor are evaluated. The Advanced Toroidal Facility design is used as a starting point because of its relatively low aspect ratio and high beta capabilities. The major limitation of the compact size is the lack of space under the helical coils for the blanket and shield. Some combination of lower aspect ratio coils, higher coil current density, thinner coils, and more effective shielding material under the coils should be incorporated into future designs to improve the feasibility of small torsatron reactor concepts. Current neoclassical confinement models for helically trapped particles show that a large radial electric field (in terms of the electric potential, eφ/T ≥ 3) is necessary to achieve ignition in a device of this size.