ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Wayne A. Houlberg, James T. Lacatski, Nermin A. Uckan
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 227-235
Technical Paper | Fusion Reactor | doi.org/10.13182/FST86-A24974
Articles are hosted by Taylor and Francis Online.
Confinement and engineering issues of a small (average minor radius ā ≃ 1 m) moderate-aspect-ratio torsatron reactor are evaluated. The Advanced Toroidal Facility design is used as a starting point because of its relatively low aspect ratio and high beta capabilities. The major limitation of the compact size is the lack of space under the helical coils for the blanket and shield. Some combination of lower aspect ratio coils, higher coil current density, thinner coils, and more effective shielding material under the coils should be incorporated into future designs to improve the feasibility of small torsatron reactor concepts. Current neoclassical confinement models for helically trapped particles show that a large radial electric field (in terms of the electric potential, eφ/T ≥ 3) is necessary to achieve ignition in a device of this size.