ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
J. F. Lyon, B. A. Carreras, K. K. Chipley, M. J. Cole, J. H. Harris, T. C. Jernigan, R. L. Johnson, V. E. Lynch, B. E. Nelson, J. A. Rome, J. Sheffield, P. B. Thompson
Fusion Science and Technology | Volume 10 | Number 2 | September 1986 | Pages 179-226
Technical Paper | Experimental Devices | doi.org/10.13182/FST86-A24973
Articles are hosted by Taylor and Francis Online.
The Advanced Toroidal Facility (ATF), now under construction at Oak Ridge National Laboratory, will be the world's largest stellarator experiment when it begins operation in early 1987. It will have a 2.1-m major radius and a 0.3-m average plasma radius, a magnetic field capability of up to 2 T for a 5-s pulse and up to 1 T steady state, and up to 5 MW of plasma heating. The ATF is designed to study a wide range of toroidal confinement issues, including confinement and stability of high-beta plasmas, low-collisionality transport, impurity behavior, magnetic configuration optimization, and steady-state operation. The ATF is the result of a study of a large number of possible coil configurations. It is an 1 = 2, 12-field-period torsatron with rotational transform between 0.3 and 1 and a plasma aspect ratio of R/ā = 7. This optimized helical field coil configuration permits direct access to a high-beta, second stability region in a flux-conserving manner, and volume-average beta values >8% may be achieved. The poloidal coil system allows study of a large variety of stellarator configurations, including those with a helical magnetic axis, and external control of the fundamental magnetic configuration parameters, including rotational transform, shear, magnetic well, and plasma shape. The ATF consists of two segmented, jointed helical field coils; three sets of poloidal field coils; a thin, helically contoured vacuum vessel; and a thick, segmented, toroidal shell support structure. Its important design features include extensive access for plasma heating and diagnostics, a high degree of construction accuracy, and parallel construction techniques. A description of the ATF torsatron, the physics and engineering reasons for the different design choices, and the expected capabilities of the device are presented.