ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Michael L. Rogers
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1367-1372
Tritium Technology | doi.org/10.13182/FST86-A24921
Articles are hosted by Taylor and Francis Online.
All fusion reactors that use deuterium-tritide (DT) for fuel will produce tritium-containing water. The quantity and quality (tritium per unit volume) of tritiated water produced depends on several factors. In general, however, the higher the reactor availability the greater the quantity and quality of water produced. This water must be collected and processed to avoid worker exposure and release to the environment. The options for disposition of this water are limited, and in more advanced reactors the tritium contained in water could represent a significant loss to the fuel cycle. The technology currently exists or is being developed to support near term, low availability machines. The technology to support more advanced concepts must be identified and further developed so that it is available when needed.