ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Michael L. Rogers
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1367-1372
Tritium Technology | doi.org/10.13182/FST86-A24921
Articles are hosted by Taylor and Francis Online.
All fusion reactors that use deuterium-tritide (DT) for fuel will produce tritium-containing water. The quantity and quality (tritium per unit volume) of tritiated water produced depends on several factors. In general, however, the higher the reactor availability the greater the quantity and quality of water produced. This water must be collected and processed to avoid worker exposure and release to the environment. The options for disposition of this water are limited, and in more advanced reactors the tritium contained in water could represent a significant loss to the fuel cycle. The technology currently exists or is being developed to support near term, low availability machines. The technology to support more advanced concepts must be identified and further developed so that it is available when needed.