ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
A. M. Hassanein, D.-K. Sze
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1355-1361
Tritium Technology | doi.org/10.13182/FST86-A24919
Articles are hosted by Taylor and Francis Online.
The self-pumping concept was proposed as a means of simplifying the impurity control system in a fusion reactor. The idea is to remove helium in-situ by trapping in freshly deposited metal surface layers of a limiter or divertor. Trapping material is added to the plasma scrape-off or edge region where it is transported to the wall. Some of the key issues for this concept are the tritium inventory in the trapping material and the permeation of protium and recycling of tritium. These quantities are shown to be acceptable for the reference design. The tritium issues for a helium-cooled solid breeder reactor design with vanadium alloy as a structural material are also examined. Models are presented for tritium permeation and inventory calculation for structure materials with the effect of a thin laver of coating material.