ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
W.J. Holtslander, R.E. Johnson, F.B. Gravelle, C.M. Shultz
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1340-1344
Tritium Technology | doi.org/10.13182/FST86-A24916
Articles are hosted by Taylor and Francis Online.
Small tritium-burning experimental tokamaks will require some means of handling the fuel after a burn. This paper presents an experimental evaluation of a scheme that would provide for the removal of the impurities produced in the fuel during the burn and delivery of the purified fuel for a subsequent burn in the machine. The fuel, simulated in this work by a hydrogen-impurity mixture, is taken from the machine, diluted to 25% with helium and passed through a uranium metal bed at 25°C, where the hydrogen is trapped reversibly and several of the impurities are irreversibly absorbed. The results showed complete removal of O2, CO, CO2, H2O, and N2O at room temperature. Removal of CH4 and NH3 required the uranium to be heated to approximately 400°C. At 400°C the hydrogen is released from the uranium metal, so the cleanup scheme requires circulation of the gas through two uranium beds, one at room temperature and one at near 400°C. When all the impurities are reacted the low temperature uranium bed is heated to 400°C to release the hydrogen back into the system in preparation for reinjection into the machine. An apparatus, simulating a small fusion fuel cleanup system, was built and demonstrated. In this apparatus two alternative flow paths for the cleanup of the gas, were provided. The first was the two uranium bed approach described above, in the second, the hot uranium bed is replaced with a SAES getter for decomposition of the CH4 and NH3.