ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
From operator to entrepreneur: David Garcia applies outage management lessons
David Garcia
If ComEd’s Zion plant in northern Illinois hadn’t closed in 1998, David Garcia might still be there, where he got his start in nuclear power as an operator at age 24.
But in his ninth year working there, Zion closed, and Garcia moved on to a series of new roles—including at Wisconsin’s Point Beach plant, the corporate offices of Minnesota’s Xcel Energy, and on the supplier side at PaR Nuclear—into an on-the-job education that he augmented with degrees in business and divinity that he sought later in life.
Garcia started his own company—Waymaker Resource Group—in 2014. Recently, Waymaker has been supporting Holtec’s restart project at the Palisades plant with staffing and analysis. Palisades sits almost exactly due east of the fully decommissioned Zion site on the other side of Lake Michigan and is poised to operate again after what amounts to an extended outage of more than three years. Holtec also plans to build more reactors at the same site.
For Garcia, the takeaway is clear: “This industry is not going away. Nuclear power and the adjacent industries that support nuclear power—and clean energy, period—are going to be needed for decades upon decades.”
In July, Garcia talked with Nuclear News staff writer Susan Gallier about his career and what he has learned about running successful outages and other projects.
W.J. Holtslander, R.E. Johnson, F.B. Gravelle, C.M. Shultz
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1340-1344
Tritium Technology | doi.org/10.13182/FST86-A24916
Articles are hosted by Taylor and Francis Online.
Small tritium-burning experimental tokamaks will require some means of handling the fuel after a burn. This paper presents an experimental evaluation of a scheme that would provide for the removal of the impurities produced in the fuel during the burn and delivery of the purified fuel for a subsequent burn in the machine. The fuel, simulated in this work by a hydrogen-impurity mixture, is taken from the machine, diluted to 25% with helium and passed through a uranium metal bed at 25°C, where the hydrogen is trapped reversibly and several of the impurities are irreversibly absorbed. The results showed complete removal of O2, CO, CO2, H2O, and N2O at room temperature. Removal of CH4 and NH3 required the uranium to be heated to approximately 400°C. At 400°C the hydrogen is released from the uranium metal, so the cleanup scheme requires circulation of the gas through two uranium beds, one at room temperature and one at near 400°C. When all the impurities are reacted the low temperature uranium bed is heated to 400°C to release the hydrogen back into the system in preparation for reinjection into the machine. An apparatus, simulating a small fusion fuel cleanup system, was built and demonstrated. In this apparatus two alternative flow paths for the cleanup of the gas, were provided. The first was the two uranium bed approach described above, in the second, the hot uranium bed is replaced with a SAES getter for decomposition of the CH4 and NH3.