ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Jeffrey A. Koch, Thomas P. Bernat, Gilbert W. Collins, Bruce A. Hammel, Andrew J. MacKinnon, Charles H. Still, James D. Sater, Donald N. Bittner
Fusion Science and Technology | Volume 43 | Number 1 | January 2003 | Pages 55-66
Technical Paper | doi.org/10.13182/FST03-A249
Articles are hosted by Taylor and Francis Online.
Targets for future laser-fusion ignition experiments will consist of a frozen deuterium-tritium ice layer adhering to the inner surface of a spherical shell, and the specifications for the inner surface quality of this ice layer are extremely demanding. We have developed a numerical raytrace model in order to validate backlit optical shadowgraphy as an ice-surface diagnostic, and we have used the code to simulate shadowgraph data obtained from mathematical ice layers having known modal imperfections. We find that backlit optical shadowgraphy is a valid diagnostic of the mode spectrum of ice-surface imperfections for mode numbers as high as 80 provided the experimental data are analyzed appropriately. We also describe alternative measurement techniques, which may be more sensitive than conventional backlit shadowgraphy.