ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
R. L. Miller, R. A. Krakowski, C. G. Bathke, C. Copenhaver, N. M. Schnurr, A, G. Engelhardt, T. J. Seed, R. M. Zubrin
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1153-1158
Fusion Reactor Design—II | doi.org/10.13182/FST86-A24886
Articles are hosted by Taylor and Francis Online.
Results of a preliminary conceptual design of a magnetic fusion reactor based on the spherical torus (tokamak), characterized by high first-stability-regime beta values at low aspect ratio and moderate vertical elongation of the plasma, are described. The concept incorporates resistive (demountable) toroidal-field coils, a double-null poloidal-field magnetic divertor, and the potential for oscillating-field current drive to allow steady-state operation. The physics basis, design-point determination, and fusion-power-core engineering are summarized.