ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
N. M. Ghoniem, M. A. Firestone, R. W. Conn
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1133-1145
Fusion Reactor Design—II | doi.org/10.13182/FST86-A24884
Articles are hosted by Taylor and Francis Online.
Operational aspects of a model tokamak system with a solid-breeder blanket are presented. The model blanket is an evolution of the STARFIRE and BCSS design studies. Full-power reactor operation is at a neutron wall loading of 5 MW/m2 and a surface heat flux of 1 MW/m2. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiA102 rods. The helium coolant pressure is 5 MPa, entering the module at 297°C and exiting at 550°C. The system power output is rated at 1000 MW(e). In this paper, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented.