ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
N. M. Ghoniem, M. A. Firestone, R. W. Conn
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1133-1145
Fusion Reactor Design—II | doi.org/10.13182/FST86-A24884
Articles are hosted by Taylor and Francis Online.
Operational aspects of a model tokamak system with a solid-breeder blanket are presented. The model blanket is an evolution of the STARFIRE and BCSS design studies. Full-power reactor operation is at a neutron wall loading of 5 MW/m2 and a surface heat flux of 1 MW/m2. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiA102 rods. The helium coolant pressure is 5 MPa, entering the module at 297°C and exiting at 550°C. The system power output is rated at 1000 MW(e). In this paper, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented.