ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
T. Kawabe, S. Hirayama, Y. Kozaki, K. Yoshikawa, N. Asami, Y. Fukai, K. Hattori, H. Hojo, T. Honda, H. Ida, T. Kitajima, S. Koda, K. Komatsu, R. Kumazawa, F. Matsuoka, T. Miyasugi, N. Morino, H. Nakashima, H. Nakata, S. Sato, Y. Uede, T. Watanabe, M. Yamada, Y. Yamamoto, H. Yamato
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 1102-1110
Nuclear Technology Experiments and Facilities | doi.org/10.13182/FST86-A24880
Articles are hosted by Taylor and Francis Online.
Conceptual design study of 14-MeV neutron source (FEF) of compact DT plasma based on the mirror confinement has been carried out to clarify the critical issues both in plasma physics and engineering. Characteristic feature of FEF-II are (i) use of RF pondermotive force for MHD stability, (ii) use of water for radiation shield of SC coil and (iii) use of end electrode system including plasma direct energy conversion. Several sets of plasma parameters are obtained under the variety of conditions from the most pessimistic case where the charge exchange (CX) loss of ions is dominant to the most optimistic case where the CX loss is negligible. The engineering feasibility has been studied for the pessimistic case. It was found that most of the engineering are feasible in the optimistic case, and that even in the pessimistic case by increasing plasma parameters there is possibility to meet engineering requirement.