ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
F. Y. Tsang, W. Leo, C. Sahraoui, S. Wuthrich, M. Shaerb
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 962-971
Lithium Blanket Module Program at the LOTUS Neutron Source Facility | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24859
Articles are hosted by Taylor and Francis Online.
A series of passive dosimetry irradiation experiments were performed inside the Lithium Blanket Module (LBM) with the 14-MeV neutron source at the Ecole Polytechnique Federale de Lausanne (EPFL). Sets of passive dosimetry foils were utilized to measure fusion-reactor-blanket neutronic environments. The dosimeter reaction data were analyzed and compared with calculational models. These experimental results demonstrate the ability to simulate low power deuterium-tritium (D-T) plasma shots by measuring the neutron field in a reactor-representative fusion blanket environment. The dosimeter results can determine the entire neutron spectrum along the full length of the LBM test rod. The set of selected dosimetry materials meets the requirements of neutronic characterization in future LBM-TFTR D-T and high power deuterium-deuterium (D-D) plasma experiments.