ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
B. F. Picologlou, Y. S. Cha, S. Majumdar
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 848-853
Liquid-Metal Blankets and Magnetohydrodynamic Effects | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24843
Articles are hosted by Taylor and Francis Online.
The reactors considered in the Tokamak Power Systems Studies (TPSS), with their reduced toroidal magnetic flux densities, increased aspect ratios, and moderate overall power outputs afford the possibility of significant improvements and simplification in the design of liquid-metal self-cooled blankets. In designing the first wall and blanket structural, thermal, and magnetohydrodynamic constraints must be satisfied simultaneously. A systematic approach to do so efficiently, and resulting design parameters are presented. Designs with separate limiters can achieve a neutron wall loading capability of about 5 MW/m2 with bare structural walls near the first wall and insulated laminated construction in regions of low fluence only. When laminated wall construction is used in the first wall coolant channels, the neutron wall loading capability exceeds 10 MW/m2.