ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Michael T. Tobin, Wayne R. Meier, Edward C. Morse
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 679-685
Inertial Confinement Fusion Driver Technology | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24821
Articles are hosted by Taylor and Francis Online.
We have carried out further investigations of technical issues associated with using a compact torus (CT) accelerator as a driver for inertial confinement fusion (ICF). In a CT accelerator, a magnetically-confined, torus-shaped plasma is compressed, accelerated and focused by two concentric electrodes. Here, we evaluate an accelerator point design with a capacitor bank energy of 9.2 MJ. Modeled by a O–D code, the system produces a xenon plasma ring with a radius of 0.73 cm, a velocity of 4×107m/s, and a mass of 4.4 µg. The plasma ring energy available for fusion is 3.8 MJ, a 40% driver efficiency. Ablation and magnetic pressures of the point design, due to CT acceleration, are analyzed. Pulsed-power switching limitations and driver cost analysis are also presented. Our studies confirm the feasibility of producing a ring to induce fusion with acceptable gain. However, some uncertainties must be resolved to establish viability.