ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
C.P.C. Wong, R.F. Bourque, E.T. Cheng, R.L. Creedon, K.R. Schultz
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 633-640
Blanket Design and Evaluation | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24814
Articles are hosted by Taylor and Francis Online.
The Elongated Tokamak (ET) is an innovative concept that uses a highly elongated plasma (plasma height-to-width ratio of 6–10) to allow high plasma currrent and high toroidal betas. ET has the potential for the development of small-size, high-power density, low-cost fusion reactors using normal conducting coils. The elongated plasma shape is achieved by use of a continuous stack of PF coils parallel to the plasma surface on both inbound and outbound sides. To achieve plasma stability, these coil stacks must be located no further than one plasma minor radius from the plasma edge, greatly restricting the space available for blankets. In order to assess the potential of a small reactor, we evaluated and designed blankets 30 to 40 cm thick. Three different thin blanket designs were found to be acceptable: FLiBe self-cooled, helium-cooled lithium, and helium-cooled 17Li83Pb blanket designs. A lithium-cooled integrated blanket-coil design (BLITZ-coil) was also found to be suitable for the ET commercial reactor.