ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Optimizing nuclear plant outages: Data analytics tools and methods for enhancing resilience and efficiency
Nuclear power plant refueling outages are among the most complex phases in a plant’s operational cycle.1 During these outages, tens of thousands of activities, including maintenance and surveillance, are conducted simultaneously within a short timeframe. Typically lasting three to four weeks, these operations involve large crews of contractors with diverse skill sets performing tasks ranging from testing and surveillance to maintenance. Outages may extend longer if major backfitting or modernization projects are planned. Consequently, plant outages are expensive, incurring significant operational costs, such as contractor labor and equipment, as well as the loss of generation while the plant is off line. This can easily cost a plant operator more than $1 million a day. Therefore, there is a constant need to mitigate the economic impact on plants by reducing the frequency, duration, and risks associated with these outages.2,3
C.P.C. Wong, R.F. Bourque, E.T. Cheng, R.L. Creedon, K.R. Schultz
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 633-640
Blanket Design and Evaluation | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24814
Articles are hosted by Taylor and Francis Online.
The Elongated Tokamak (ET) is an innovative concept that uses a highly elongated plasma (plasma height-to-width ratio of 6–10) to allow high plasma currrent and high toroidal betas. ET has the potential for the development of small-size, high-power density, low-cost fusion reactors using normal conducting coils. The elongated plasma shape is achieved by use of a continuous stack of PF coils parallel to the plasma surface on both inbound and outbound sides. To achieve plasma stability, these coil stacks must be located no further than one plasma minor radius from the plasma edge, greatly restricting the space available for blankets. In order to assess the potential of a small reactor, we evaluated and designed blankets 30 to 40 cm thick. Three different thin blanket designs were found to be acceptable: FLiBe self-cooled, helium-cooled lithium, and helium-cooled 17Li83Pb blanket designs. A lithium-cooled integrated blanket-coil design (BLITZ-coil) was also found to be suitable for the ET commercial reactor.