ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
J. Sheffield, R. A. Dory, W. A. Houlberg, N. A. Uckan, M. Bell, P. Colestock, J. Hosea, S. Kaye, M. Petravic, D. Post, S. D. Scott, K. M. Young, K. H. Burrell, N. Ohyabu, R. Stambaugh, M. Greenwald, P. Liewer, D. Ross, C. Singer, H. Weitzner
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 481-490
The Compact Ignition Tokamak Program | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24793
Articles are hosted by Taylor and Francis Online.
The goal of the Compact Ignition Tokamak (CIT) program is to provide a cost-effective route to the production of a burning deuterium-tritium plasma, so that alpha-particle effects may be studied. A key issue to be studied in the CIT is whether alpha power behaves like other power sources in affecting tokamak plasma confinement. The program is managed by the Princeton Plasma Physics Laboratory and includes broad community involvement. Guidelines for the preliminary design effort have been provided by the Ignition Technical Oversight Committee in discussion with the tokamak community. The reference design is a tokamak with a high field (10 T), high current (10 MA), a poloidal divertor, and liquid-nitrogen-cooled coils. It is a small, high-power-density device of the type proposed by Bruno Coppi (MIT). It has a major radius of 1.23 m, a minor radius of 0.43 m, and a plasma ellipticity of 1.8. This paper reviews the aims of the program and the basis for the physics guidelines. The role of the CIT in the longer-term tokamak program is briefly discussed.