ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Optimizing nuclear plant outages: Data analytics tools and methods for enhancing resilience and efficiency
Nuclear power plant refueling outages are among the most complex phases in a plant’s operational cycle.1 During these outages, tens of thousands of activities, including maintenance and surveillance, are conducted simultaneously within a short timeframe. Typically lasting three to four weeks, these operations involve large crews of contractors with diverse skill sets performing tasks ranging from testing and surveillance to maintenance. Outages may extend longer if major backfitting or modernization projects are planned. Consequently, plant outages are expensive, incurring significant operational costs, such as contractor labor and equipment, as well as the loss of generation while the plant is off line. This can easily cost a plant operator more than $1 million a day. Therefore, there is a constant need to mitigate the economic impact on plants by reducing the frequency, duration, and risks associated with these outages.2,3
J. Sheffield, R. A. Dory, W. A. Houlberg, N. A. Uckan, M. Bell, P. Colestock, J. Hosea, S. Kaye, M. Petravic, D. Post, S. D. Scott, K. M. Young, K. H. Burrell, N. Ohyabu, R. Stambaugh, M. Greenwald, P. Liewer, D. Ross, C. Singer, H. Weitzner
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 481-490
The Compact Ignition Tokamak Program | Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 15–19, 1986) | doi.org/10.13182/FST86-A24793
Articles are hosted by Taylor and Francis Online.
The goal of the Compact Ignition Tokamak (CIT) program is to provide a cost-effective route to the production of a burning deuterium-tritium plasma, so that alpha-particle effects may be studied. A key issue to be studied in the CIT is whether alpha power behaves like other power sources in affecting tokamak plasma confinement. The program is managed by the Princeton Plasma Physics Laboratory and includes broad community involvement. Guidelines for the preliminary design effort have been provided by the Ignition Technical Oversight Committee in discussion with the tokamak community. The reference design is a tokamak with a high field (10 T), high current (10 MA), a poloidal divertor, and liquid-nitrogen-cooled coils. It is a small, high-power-density device of the type proposed by Bruno Coppi (MIT). It has a major radius of 1.23 m, a minor radius of 0.43 m, and a plasma ellipticity of 1.8. This paper reviews the aims of the program and the basis for the physics guidelines. The role of the CIT in the longer-term tokamak program is briefly discussed.