ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Masahiro Kinoshita, Hiroshi Yoshida, Hidefumi Takeshita
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 462-473
Technical Paper | Tritium System | doi.org/10.13182/FST86-A24786
Articles are hosted by Taylor and Francis Online.
In the tritium breeding system for a fusion reactor, the addition of a large flow rate of hydrogen (H2) or deuterium (D2) to the helium purge gas is considered essential to avoid a large amount of tritium inventory. However, the tritium concentration in the hydrogen isotope mixture to be separated is reduced by two or three orders of magnitude by the addition. The effects of the drastic dilution of tritium by H2 or D2 on the isotope separation by cryogenic distillation are analyzed. The analysis is made under the conditions of the Japanese Fusion Engineering Reactor where the tritium production rate is 3 g/h. It is shown that the dilution requires a specific cascade in addition to the cascade in the mainstream fuel circulation system. The H2 addition is much more favorable than the D2 addition in terms of the cascade scale needed, tritium inventory within the cascade, and refrigeration capacity required. The dilution of tritium by H2 by two orders of magnitude requires a two-column cascade, and the tritium inventory and refrigeration capacity required are ∼8 g and 65 W, respectively. The dilution by three orders of magnitude requires a three-column cascade, and the values of the two parameters are ∼12 g and 630 W, respectively. In these cases, the tritium inventory and refrigeration capacity required for the cascade in the mainstream fuel circulation system are ∼70 g and 110 W, respectively. Thus, the dilution up to three orders of magnitude could pose no serious problem in the isotope separation.