ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Masahiro Kinoshita, Hiroshi Yoshida, Hidefumi Takeshita
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 462-473
Technical Paper | Tritium System | doi.org/10.13182/FST86-A24786
Articles are hosted by Taylor and Francis Online.
In the tritium breeding system for a fusion reactor, the addition of a large flow rate of hydrogen (H2) or deuterium (D2) to the helium purge gas is considered essential to avoid a large amount of tritium inventory. However, the tritium concentration in the hydrogen isotope mixture to be separated is reduced by two or three orders of magnitude by the addition. The effects of the drastic dilution of tritium by H2 or D2 on the isotope separation by cryogenic distillation are analyzed. The analysis is made under the conditions of the Japanese Fusion Engineering Reactor where the tritium production rate is 3 g/h. It is shown that the dilution requires a specific cascade in addition to the cascade in the mainstream fuel circulation system. The H2 addition is much more favorable than the D2 addition in terms of the cascade scale needed, tritium inventory within the cascade, and refrigeration capacity required. The dilution of tritium by H2 by two orders of magnitude requires a two-column cascade, and the tritium inventory and refrigeration capacity required are ∼8 g and 65 W, respectively. The dilution by three orders of magnitude requires a three-column cascade, and the values of the two parameters are ∼12 g and 630 W, respectively. In these cases, the tritium inventory and refrigeration capacity required for the cascade in the mainstream fuel circulation system are ∼70 g and 110 W, respectively. Thus, the dilution up to three orders of magnitude could pose no serious problem in the isotope separation.