ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE’s latest fusion energy road map aims to bridge known gaps
The Department of Energy introduced a Fusion Science & Technology (S&T) Roadmap on October 16 as a national “Build–Innovate–Grow” strategy to develop and commercialize fusion energy by the mid-2030s by aligning public investment and private innovation. Hailed by Darío Gil, the DOE’s new undersecretary for science, as bringing “unprecedented coordination across America's fusion enterprise” and advancing President Trump’s January 2025 executive order, on “Unleashing American Energy,” the road map echoes plans issued by the DOE’s Office of Fusion Energy Sciences (FES) in 2023 and 2024, with a new emphasis on the convergence of AI and fusion.
The road map release coincided with other fusion energy events held this week in Washington, D.C., and beyond.
Margaret L. Hamilton, Frank A. Garner, Walter J. S. Yang
Fusion Science and Technology | Volume 10 | Number 3 | November 1986 | Pages 405-410
Technical Paper | Materials Engineering | doi.org/10.13182/FST86-A24780
Articles are hosted by Taylor and Francis Online.
Since the microstructural origins of radiation-induced toughness degradation are presumed to be identical to those that cause changes in tensile properties, it appears possible to make predictions of residual fracture toughness based on changes in the tensile behavior and the associated microstructural evolution of the steel. A model for tensile-toughness correlations is presented that appears to be valid for radiation-hardened stainless steels. Tensile data from both ducts and cladding tubes of 20% cold-worked American Iron and Steel Institute Type 316 stainless steel irradiated in Experimental Breeder Reactor-II are used to make the prediction that sufficient toughness is retained in this steel for both fast reactor and fusion reactor applications.