ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Wolfgang Schule
Fusion Science and Technology | Volume 10 | Number 1 | July 1986 | Pages 113-123
Technical Paper | Materials Engineering | doi.org/10.13182/FST86-A24752
Articles are hosted by Taylor and Francis Online.
In Cu-30 Zn alloys during irradiation with 2-MeV electrons from a Van de Graaff generator, the electrical resistivity first decreases due to radiation-enhanced ordering and then increases due to the formation of very small interstitial clusters. The activation energy during irradiation for both processes is approximately Qirr = 0.37 eV and is interpreted as half of the migration energy of freely migrating interstitials. For irradiation temperatures below 75°C, a second resistivity increase is found that is attributed to the formation of stable interstitial clusters. The observed radiation-enhanced diffusion rates below ambient temperature are many orders of magnitude smaller and larger than those predicted by the one- and the two-interstitial models, respectively, and these rates are in agreement with the predictions of the modified two-interstitial model.