ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Koichi Maki
Fusion Science and Technology | Volume 10 | Number 1 | July 1986 | Pages 70-77
Technical Paper | Plasma Engineering | doi.org/10.13182/FST86-A24747
Articles are hosted by Taylor and Francis Online.
The possibility of burn control by hydrogen feeding was investigated for tokamak plasma under a self-sustained condition. When fusion power shifts higher than a target value, increases in hydrogen feed rate can lower the power by a reduction in ion temperature due to enhanced hydrogen density. Conversely, when the power shifts lower than the target, stopping hydrogen feeding and exhaust can increase the power through an increase in ion temperature due to reduced hydrogen density. Especially in the latter, in order to enlarge the recoverable magnitude of power shift, it is necessary to select a self-sustained condition having the highest hydrogen density. The results confirmed the possibility of burn control by hydrogen feeding.