ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Koichi Maki
Fusion Science and Technology | Volume 10 | Number 1 | July 1986 | Pages 70-77
Technical Paper | Plasma Engineering | doi.org/10.13182/FST86-A24747
Articles are hosted by Taylor and Francis Online.
The possibility of burn control by hydrogen feeding was investigated for tokamak plasma under a self-sustained condition. When fusion power shifts higher than a target value, increases in hydrogen feed rate can lower the power by a reduction in ion temperature due to enhanced hydrogen density. Conversely, when the power shifts lower than the target, stopping hydrogen feeding and exhaust can increase the power through an increase in ion temperature due to reduced hydrogen density. Especially in the latter, in order to enlarge the recoverable magnitude of power shift, it is necessary to select a self-sustained condition having the highest hydrogen density. The results confirmed the possibility of burn control by hydrogen feeding.