ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Balabhadra Misra, Grover D. Morgan
Fusion Science and Technology | Volume 9 | Number 3 | May 1986 | Pages 452-458
Technical Paper | Blanket Engineering | doi.org/10.13182/FST86-A24731
Articles are hosted by Taylor and Francis Online.
An assessment of the role of the design and operating parameters on the performance of solid breeder blankets based on lithium ceramics (Li2O and γ-LiAlO2) was carried out. The results indicate that not only poor thermophysical properties but also uncertainties associated with the property data base are the design-limiting f actors. In addition, the operating conditions such as the upper and the lower temperature limits, the choice of breeder materials either in the form of sintered pellets or in sphere-pac form, the interfacial contact resistance between the coolant channels and the solid breeder, and the diffusion characteristics of tritium and chemical interactions between tritium and the solid breeder play a prominent role in selection of blanket concepts. Designs to account for the expected degradation of the thermophysical properties due to thermal sintering and nuclear irradiation lead to high coolant and structural material fractions, and thus may result in a lower tritium breeding ratio. The results of the parametric studies show that water-cooled solid breeder blanket designs require a firmer data base for the operating temperature limits, the thermophysical properties, the gap conductances, and the tritium retention and release characteristics of solid breeders.