ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Robert G. Mills
Fusion Science and Technology | Volume 9 | Number 3 | May 1986 | Pages 408-421
Technical Paper | Fusion Reactor | doi.org/10.13182/FST86-A24729
Articles are hosted by Taylor and Francis Online.
A reactor is proposed in which the principal role of the magnetic field is to reduce the thermal conductivity. A purely toroidal magnetic field confines a plasma whose pressure is almost constant. The plasma is limited in height by two planar electrodes. The density rises as the temperature falls toward the material boundaries to maintain essentially isobaric conditions. Fueling the reactor is a simple by-product of the drift motion of the ions through the reactor, the confinement time being determined by the residence time of transport rather than by diffusion. As in many reactor schemes, the size is large, but not unreasonable. There are unsolved problems requiring research, but these seem addressable with modest temperature plasmas.