ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
P. M. Campbell
Fusion Science and Technology | Volume 9 | Number 3 | May 1986 | Pages 391-400
Technical Paper | Plasma Heating System | doi.org/10.13182/FST86-A24727
Articles are hosted by Taylor and Francis Online.
The observation that heat flux anomalies may be related to laser intensity with a threshold of ∼1 × 1014 W/cm2 suggests that hot electrons, which become significant for values of Iλ2 above this threshold, may be a factor in the observed reduction of thermal heat flow. A formulation of heat transport in plasmas with a two-component electron distribution is developed, and solutions are found that are valid in large gradients. Specific transport effects arising from the hot and cold electron interaction are demonstrated in sample calculations. It is found that when the interaction between the two electron groups is considered in conjunction with the properties of hot electron formation, many of the heat flow anomalies observed in experiments can be explained.