ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Nolan E. Hertel, R. H. Johnsons, Bernard W. Wehring, John J. Dorning
Fusion Science and Technology | Volume 9 | Number 2 | March 1986 | Pages 345-361
Technical Paper | Blanket Engineering | doi.org/10.13182/FST86-A24721
Articles are hosted by Taylor and Francis Online.
Integral experiments have been performed using a homogeneous iron spherical shell to test neutron cross-section data. Neutron leakage spectra from the shell were measured using 252Cf-fission and (deuterium-tritium) D-T-fusion neutron sources and an NE-213 spectrometry system. An associated particle detector was used to monitor the absolute D-T neutron source strength as well as any accompanying deuterium-deuterium neutron contamination. The leakage spectra were calculated using the continuous-energy Monte Carlo code VIM and the discrete ordinates Sn code ANISN employing ENDF/B-IV. For neutron energies between 1 and 5 MeV, the calculations underpredicted the leakage spectrum by factors of 1.4 to 2 for the californium neutron source and of 2 to 3 for the D-T neutron source. The large discrepancies are attributed to inadequate representation of cross-section resonance structure (namely, minima); inadequate representation of the angular and secondary energy distributions for continuum inelastic scattering and (n,2n) reactions also contribute to these discrepancies.