ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
George C. Vlases, D. S. Rowe, the Firebird Design Team
Fusion Science and Technology | Volume 9 | Number 1 | January 1986 | Pages 116-135
Technical Paper | doi.org/10.13182/FST86-A24707
Articles are hosted by Taylor and Francis Online.
A compact fusion reactor design with magnetic confinement based on a field-reversed configuration is described. The reactor is linear and operates in a pulsed mode where the plasma moves as a translating “plasmoid” through the burn chamber. The plasma physics model incorporates recent theoretical and experimental results on confinement. The design is compact and its power output is limited by first-wall and blanket technology. A helium-cooled solid breeder blanket is used for tritium breeding and thermal energy removal. A graphite thermal shield is included to reduce the energy generation and resulting first-wall stresses during pulsed operation. These studies indicate that attractive designs in the range of 300 to 1000 MW(electric) are possible, provided that currently understood scaling laws extrapolate favorably into the reactor regime. Multidimensional neutronics analysis indicates tritium breeding ratios >1.0.