ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Masahiro Nishikawa, Takefumi Narikawa, Masatami Iwamoto, Kenji Watanabe
Fusion Science and Technology | Volume 9 | Number 1 | January 1986 | Pages 101-115
Technical Paper | doi.org/10.13182/FST86-A24706
Articles are hosted by Taylor and Francis Online.
A study of a conceptual design for a “cassette” compact toroid reactor has been performed that emphasizes quick replacement handling. The core plasma, spheromak, is ohmically heated in a merging process between the core plasma and the gun-produced spheromak. The quick handling of replacement accomplished by using afunctional material, a shape memory alloy (SMA) joint, which is proposed for release from firstwall high neutron loading in a newly devised mechanical and structural method. The SMA joint can be used for connecting or disconnecting the coupling by simply controlling the SMA temperature without the need for a robot system. Effective heat removal from the first wall and thermal and electromagnetic stress in a fusion core with very high heat flux are discussed from an engineering standpoint.