ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Ronald Kreutz
Fusion Science and Technology | Volume 8 | Number 3 | November 1985 | Pages 2708-2720
Technical Paper | ICF Driver Technology | doi.org/10.13182/FST85-A24692
Articles are hosted by Taylor and Francis Online.
A summary of the investigations on pellet delivery is presented for the conceptual heavy-ion-beam-driven fusion reactor HIBALL. The results are given for the physical feasibility of pneumatic and electromagnetic pellet acceleration, and proposals are made for adequate pellet carriers. These can be utilized for any inertial confinement fusion reactor concept. A suitable value is derived for the pellet velocity by regarding the heating of the pellet by cavity radiation. A pellet velocity of 200 m/s is chosen. It is shown that for this pellet velocity the pellet tracking and synchronization of the pellet with the ion pulses are consistently feasible with respect to adequate pellet illumination by the ion beams. The proposed conceptual pellet injectors are designed for a 2-g projectile, composed of the pellet and a pellet carrier, and for an acceleration distance of 2 m. To achieve a pellet velocity of 200 m/s, a propellant gas pressure of 0.5 MPa is required for pneumatic acceleration. Using a magnetic linear accelerator with coils of 1-cm radius and 1-cm spacing, an effective magnetic induction on the axis of 1.2 T is necessary. An adequate pellet carrier is designed for each of the acceleration methods. This is a closed capsule for pneumatic acceleration and an open carrier with a ferromagnetic driving body for electromagnetic acceleration. The two injection methods are compared and evaluated with respect to the technical feasibility of the corresponding system components in order to give a concluding recommendation.