ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
T.F. Kempe, S.B. Russell, K.J. Donnelly, H.J. Reilly
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2575-2581
Environmental Study | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24667
Articles are hosted by Taylor and Francis Online.
Computer codes for modelling the dispersion and transfer of tritium released to the atmosphere were compared. The codesa originated from Canada, the United States, Sweden and Japan. The comparisons include acute and chronic emissions of tritiated water vapour or elemental tritium from a hypothetical nuclear facility. Individual and collective doses to the population within 100 km of the site were calculated. The discrepancies among the code predictions were about one order of magnitude for the HTO emissions but were significantly more varied for the HT emissions. Codes that did not account for HT to HTO conversion and cycling of tritium in the environment predicted doses that were several orders of magnitude less than codes that incorporate this feature into the model.