ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. E. Easterly,1 H. Noguchi,2, M. R. Bennett3
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2564-2568
Environmental Study | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24665
Articles are hosted by Taylor and Francis Online.
Conversion rates of tritium gas (T2) to tritiated water are reported for tritium in ambient air and in nitrogen mixtures for initial tritium concentrations between 10−3 and 1 Ci/m3. Evidence suggests that, for air mixtures, production of condensable species, primarily HTO, occurs at a rate commensurate with the tritium decay rate. Nitrogen with less than 0.05% oxygen decreases this rate by a small (∼25%) amount. Irradiation with up to 10 Krad 60Co does not measurably affect the conversion rate in ambient air. This new data, along with the data from other authors, reveals that over the range of 10−3 to 106 Ci/m3, there are three reaction order regimes: (1) first order between 10−3 and 10 Ci/m3; (2) approximately second order between 10 and 104 Ci/m3; and (3) first order above 104 Ci/m3.