ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
T. Serpekian, H.P. Buchkremer, R. Heinen, D. Stver, K.D. Fischmann
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2486-2490
Fission Reactor | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24652
Articles are hosted by Taylor and Francis Online.
The helium coolant of a high temperature nuclear power reactor (HTR) operating in the temperature region 570 to 1220 K has to be purified from impurities such as H2, N2, CO, CO2, H2O and CH4. Also tritium has to be removed especially in the case of the process heat reactor to minimize contamination of product gases. Cerium misch metal was investigated as getter material at 570 K under near realistic conditions. The results show that this method can become an effective, alternative gas purification system. Carbon monoxide gives some concern if it is present in high concentrations by partially passivating the material. But the getter bed can easily be re-activated by a heating process.
Measurements with tritium injection showed that not all tritium is being gettered. Probably some species (possibly CH3T) are formed which are not as readily absorbed as tritium in form of T2, HT or HTO. Work in this field is going on to clarify this effect.