ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The newest era of workforce development at ANS
As most attendees of this year’s ANS Annual Conference left breakfast in the Grand Ballroom of the Chicago Downtown Marriott to sit in on presentations covering everything from career pathways in fusion to recently digitized archival nuclear films, 40 of them made their way to the hotel’s fifth floor to take part in the second offering of Nuclear 101, a newly designed certification course that seeks to give professionals who are in or adjacent to the industry an in-depth understanding of the essentials of nuclear energy and engineering from some of the field’s leading experts.
A. Attalla, J. C. Birkbeck
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2467-2470
Material Property and Tritium Control | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24649
Articles are hosted by Taylor and Francis Online.
A pulsed nuclear magnetic resonance (NMR) procedure was developed for the quantitative determination of deuterium and tritium in radioactive, effluent, wastewater to aid in the design of an efficient combined electrolytic/catalytic exchange system for the recovery of these hydrogen isotopes. The deuterium and tritium NMR signals were observed at 9.210 and 45.7 MHz, respectively. Ten different effluent water samples were analyzed for deuterium and tritium to establish base-line data for the preparation of standard reference samples. The hydrogen isotope concentrations ranged from 0.11 to 2.40 g deuterium and from 2.0 to 21.0 mg tritium per liter of processed sample. The standard deviation of the hydrogen isotope determinations is ±0.017 g deuterium and ±0.06 mg tritium per liter of processed effluent water. In the future, the effectiveness of specially prepared and analyzed (calorimetry) effluent samples as tritium standards will be investigated. *Mound is operated by Monsanto Research Corporation for the U. S. Department of Energy under Contract No. DE-AC04-76DP00053.