ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
W.T. Shmayda, F. Waelbroeck, J. Winter, P. Wienhold, T. Banno, N.P. Kherani
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2285-2289
Research and Development | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24621
Articles are hosted by Taylor and Francis Online.
Institut fur Plasmaphysik, Kernforschungsanlage Julich GmbH, Association EURATOM-KFA, Julich, West Germany The variation in the steady state hydrogen permeation flux magnitude through composite metals under both molecular and atomic hydrogen upstream driving conditions is discussed. With molecular hydrogen upstream, the permeant flux magnitude does not depend on the permeant direction through the composite. Under atomic hydrogen bombardment conditions on the upstream side, however, this magnitude does depend on the permeant direction. In a two layer system, the permeant flux magnitude is enhanced by orienting the composite metal such that the layer with the higher product of solubility (S) with surface recombination rate constant (kr) faces downstream. Furthermore, the degree of asymmetry in the hydrogen flow (forward permeation/reverse permeation) increases with decreasing upstream pressure. First measurements on a copper-clad mild steel membrane are presented and confirm the expected permeation performance.