ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
W.T. Shmayda, F. Waelbroeck, J. Winter, P. Wienhold, T. Banno, N.P. Kherani
Fusion Science and Technology | Volume 8 | Number 2 | September 1985 | Pages 2285-2289
Research and Development | Proceedings of the Second National Topical Meeting on Tritium Technology in Fission, Fusion and Isotopic Applications (Dayton, Ohio, April 30 to May 2, 1985) | doi.org/10.13182/FST85-A24621
Articles are hosted by Taylor and Francis Online.
Institut fur Plasmaphysik, Kernforschungsanlage Julich GmbH, Association EURATOM-KFA, Julich, West Germany The variation in the steady state hydrogen permeation flux magnitude through composite metals under both molecular and atomic hydrogen upstream driving conditions is discussed. With molecular hydrogen upstream, the permeant flux magnitude does not depend on the permeant direction through the composite. Under atomic hydrogen bombardment conditions on the upstream side, however, this magnitude does depend on the permeant direction. In a two layer system, the permeant flux magnitude is enhanced by orienting the composite metal such that the layer with the higher product of solubility (S) with surface recombination rate constant (kr) faces downstream. Furthermore, the degree of asymmetry in the hydrogen flow (forward permeation/reverse permeation) increases with decreasing upstream pressure. First measurements on a copper-clad mild steel membrane are presented and confirm the expected permeation performance.